Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 378, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37311807

RESUMO

The recognition of inner speech, which could give a 'voice' to patients that have no ability to speak or move, is a challenge for brain-computer interfaces (BCIs). A shortcoming of the available datasets is that they do not combine modalities to increase the performance of inner speech recognition. Multimodal datasets of brain data enable the fusion of neuroimaging modalities with complimentary properties, such as the high spatial resolution of functional magnetic resonance imaging (fMRI) and the temporal resolution of electroencephalography (EEG), and therefore are promising for decoding inner speech. This paper presents the first publicly available bimodal dataset containing EEG and fMRI data acquired nonsimultaneously during inner-speech production. Data were obtained from four healthy, right-handed participants during an inner-speech task with words in either a social or numerical category. Each of the 8-word stimuli were assessed with 40 trials, resulting in 320 trials in each modality for each participant. The aim of this work is to provide a publicly available bimodal dataset on inner speech, contributing towards speech prostheses.


Assuntos
Percepção da Fala , Fala , Humanos , Encéfalo , Eletroencefalografia , Imageamento por Ressonância Magnética
2.
J Neural Eng ; 19(2)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35395645

RESUMO

Objective.Brain-computer interfaces (BCIs) have the potential to bypass damaged neural pathways and restore functionality lost due to injury or disease. Approaches to decoding kinematic information are well documented; however, the decoding of kinetic information has received less attention. Additionally, the possibility of using stereo-electroencephalography (SEEG) for kinetic decoding during hand grasping tasks is still largely unknown. Thus, the objective of this paper is to demonstrate kinetic parameter decoding using SEEG in patients performing a grasping task with two different force levels under two different ascending rates.Approach.Temporal-spectral representations were studied to investigate frequency modulation under different force tasks. Then, force amplitude was decoded from SEEG recordings using multiple decoders, including a linear model, a partial least squares model, an unscented Kalman filter, and three deep learning models (shallow convolutional neural network, deep convolutional neural network and the proposed CNN+RNN neural network).Main results.The current study showed that: (a) for some channel, both low-frequency modulation (event-related desynchronization (ERD)) and high-frequency modulation (event-related synchronization) were sustained during prolonged force holding periods; (b) continuously changing grasp force can be decoded from the SEEG signals; (c) the novel CNN+RNN deep learning model achieved the best decoding performance, with the predicted force magnitude closely aligned to the ground truth under different force amplitudes and changing rates.Significance.This work verified the possibility of decoding continuously changing grasp force using SEEG recordings. The result presented in this study demonstrated the potential of SEEG recordings for future BCI application.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Eletroencefalografia/métodos , Força da Mão , Humanos , Modelos Lineares , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...